Central Library, Indian Institute of Technology Delhi
केंद्रीय पुस्तकालय, भारतीय प्रौद्योगिकी संस्थान दिल्ली

Efficient processing of deep neural networks / Vivienne Sze, Yu-Hsin Chen, and Tien-Ju Yang, Joel S. Emer.

By: Sze, Vivienne [author.]Contributor(s): Chen, Yu-Hsin (Ph. D. in electrical engineering and computer science) [author.] | Yang, Tien-Ju [author.] | Emer, Joel S [author.]Material type: TextTextSeries: Synthesis digital library of engineering and computer science | Synthesis lectures in computer architecture ; #50.Publisher: [San Rafael, California] : Morgan & Claypool, [2020]Description: 1 PDF (xxi, 319 pages) : illustrations (some color)Content type: text Media type: electronic Carrier type: online resourceISBN: 9781681738321; 9781681738338Subject(s): Neural networks (Computer science) | Data mining | Machine learning -- Industrial applications | Big data | Invisible Web | deep learning | neural network | deep neural networks (DNN) | convolutional neural networks (CNN) | artificial intelligence (AI) | efficient processing | accelerator architecture | hardware/software co-design | hardware/algorithm co-design | domain-specific acceleratorsAdditional physical formats: Print version:: No titleDDC classification: 006.3/2 LOC classification: QA76.87 | .S944 2020ebOnline resources: Abstract with links to resource | Abstract with links to full text Also available in print.
Contents:
part I. Understanding deep neural networks -- 1. Introduction -- 1.1. Background on deep neural networks -- 1.2. Training versus inference -- 1.3. Development history -- 1.4. Applications of DNNs -- 1.5. Embedded versus cloud
2. Overview of deep neural networks -- 2.1. Attributes of connections within a layer -- 2.2. Attributes of connections between layers -- 2.3. Popular types of layers in DNNs -- 2.4. Convolutional neural networks (CNNs) -- 2.5. Other DNNs -- 2.6. DNN development resources
part II. Design of hardware for processing DNNs -- 3. Key metrics and design objectives -- 3.1. Accuracy -- 3.2. Throughput and latency -- 3.3. Energy efficiency and power consumption -- 3.4. Hardware cost -- 3.5. Flexibility -- 3.6. Scalability -- 3.7. Interplay between different metrics
4. Kernel computation -- 4.1. Matrix multiplication with Toeplitz -- 4.2. Tiling for optimizing performance -- 4.3. Computation transform optimizations -- 4.4. Summary
5. Designing DNN accelerators -- 5.1. Evaluation metrics and design objectives -- 5.2. Key properties of DNN to leverage -- 5.3. DNN hardware design considerations -- 5.4. Architectural techniques for exploiting data reuse -- 5.5. Techniques to reduce reuse distance -- 5.6. Dataflows and loop nests -- 5.7. Dataflow taxonomy -- 5.8. DNN accelerator buffer management strategies -- 5.9. Flexible NoC design for DNN accelerators -- 5.10. Summary
6. Operation mapping on specialized hardware -- 6.1. Mapping and loop nests -- 6.2. Mappers and compilers -- 6.3. Mapper organization -- 6.4. Analysis framework for energy efficiency -- 6.5. Eyexam : framework for evaluating performance -- 6.6. Tools for map space exploration
part III. Co-design of DNN hardware and algorithms -- 7. Reducing precision -- 7.1. Benefits of reduce precision -- 7.2. Determining the bit width -- 7.3. Mixed precision : different precision for different data types -- 7.4. Varying precision : change precision for different parts of the DNN -- 7.5. Binary nets -- 7.6. Interplay between precision and other design choices -- 7.7. Summary of design considerations for reducing precision
8. Exploiting sparsity -- 8.1. Sources of sparsity -- 8.2. Compression -- 8.3. Sparse dataflow -- 8.4. Summary
9. Designing efficient DNN models -- 9.1. Manual network design -- 9.2. Neural architecture search -- 9.3. Knowledge distillation -- 9.4. Design considerations for efficient DNN models
10. Advanced technologies -- 10.1. Processing near memory -- 10.2. Processing in memory -- 10.3. Processing in sensor -- 10.4. Processing in the optical domain -- 11. Conclusion.
Abstract: This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics--such as energy-efficiency, throughput, and latency--without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
Ebooks Ebooks Indian Institute of Technology Delhi - Central Library
Available

Mode of access: World Wide Web.

System requirements: Adobe Acrobat Reader.

Part of: Synthesis digital library of engineering and computer science.

Includes bibliographical references (pages 283-316).

part I. Understanding deep neural networks -- 1. Introduction -- 1.1. Background on deep neural networks -- 1.2. Training versus inference -- 1.3. Development history -- 1.4. Applications of DNNs -- 1.5. Embedded versus cloud

2. Overview of deep neural networks -- 2.1. Attributes of connections within a layer -- 2.2. Attributes of connections between layers -- 2.3. Popular types of layers in DNNs -- 2.4. Convolutional neural networks (CNNs) -- 2.5. Other DNNs -- 2.6. DNN development resources

part II. Design of hardware for processing DNNs -- 3. Key metrics and design objectives -- 3.1. Accuracy -- 3.2. Throughput and latency -- 3.3. Energy efficiency and power consumption -- 3.4. Hardware cost -- 3.5. Flexibility -- 3.6. Scalability -- 3.7. Interplay between different metrics

4. Kernel computation -- 4.1. Matrix multiplication with Toeplitz -- 4.2. Tiling for optimizing performance -- 4.3. Computation transform optimizations -- 4.4. Summary

5. Designing DNN accelerators -- 5.1. Evaluation metrics and design objectives -- 5.2. Key properties of DNN to leverage -- 5.3. DNN hardware design considerations -- 5.4. Architectural techniques for exploiting data reuse -- 5.5. Techniques to reduce reuse distance -- 5.6. Dataflows and loop nests -- 5.7. Dataflow taxonomy -- 5.8. DNN accelerator buffer management strategies -- 5.9. Flexible NoC design for DNN accelerators -- 5.10. Summary

6. Operation mapping on specialized hardware -- 6.1. Mapping and loop nests -- 6.2. Mappers and compilers -- 6.3. Mapper organization -- 6.4. Analysis framework for energy efficiency -- 6.5. Eyexam : framework for evaluating performance -- 6.6. Tools for map space exploration

part III. Co-design of DNN hardware and algorithms -- 7. Reducing precision -- 7.1. Benefits of reduce precision -- 7.2. Determining the bit width -- 7.3. Mixed precision : different precision for different data types -- 7.4. Varying precision : change precision for different parts of the DNN -- 7.5. Binary nets -- 7.6. Interplay between precision and other design choices -- 7.7. Summary of design considerations for reducing precision

8. Exploiting sparsity -- 8.1. Sources of sparsity -- 8.2. Compression -- 8.3. Sparse dataflow -- 8.4. Summary

9. Designing efficient DNN models -- 9.1. Manual network design -- 9.2. Neural architecture search -- 9.3. Knowledge distillation -- 9.4. Design considerations for efficient DNN models

10. Advanced technologies -- 10.1. Processing near memory -- 10.2. Processing in memory -- 10.3. Processing in sensor -- 10.4. Processing in the optical domain -- 11. Conclusion.

Abstract freely available; full-text restricted to subscribers or individual document purchasers.

Compendex

INSPEC

Google scholar

Google book search

This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics--such as energy-efficiency, throughput, and latency--without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.

Also available in print.

Title from PDF title page (viewed on July 7, 2020).

There are no comments on this title.

to post a comment.
Copyright © 2022 Central Library, Indian Institute of Technology Delhi. All Rights Reserved.

Powered by Koha