Central Library, Indian Institute of Technology Delhi
केंद्रीय पुस्तकालय, भारतीय प्रौद्योगिकी संस्थान दिल्ली

Underwater communications [electronic resource] / Marco Lanzagorta.

By: Lanzagorta, MarcoMaterial type: TextTextSeries: Synthesis digital library of engineering and computer science | Synthesis lectures on communications ; # 6.Publication details: San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) :: Morgan & Claypool,, c2013Description: 1 electronic text (xv, 113 p.) : ill., digital fileISBN: 9781608458455 (electronic bk.)Subject(s): Underwater acoustic telemetry | Optical communications | underwater communications | underwater optics | optical communications | RF communications | ELF | VLF | quantum communications | quantum key distribution | quantum cryptographyAdditional physical formats: Print version:: No titleDDC classification: 620.25 LOC classification: TK5103.52 | .L258 2013Online resources: Abstract with links to resource Also available in print.
Contents:
Preface -- Acknowledgments --
1. Introduction -- 1.1 Perfectly secure communications -- 1.2 Public key distribution protocols -- 1.3 Summary --
2. Electrodynamics of attenuating media -- 2.1 Propagation in attenuating media -- 2.2 Maxwell equations in material media -- 2.2.1 Electromagnetic waves in dielectrics -- 2.2.2 Electromagnetic waves in conductors -- 2.2.3 Attenuation and refractive indices -- 2.3 Molecular absorption -- 2.3.1 Resonant absorption -- 2.3.2 Low-frequency limit -- 2.3.3 The plasma frequency -- 2.3.4 Energy dissipation -- 2.4 Molecular scattering -- 2.4.1 Density and temperature fluctuations -- 2.4.2 Rayleigh scattering -- 2.5 Mie scattering -- 2.6 Summary --
3. Underwater communication channels -- 3.1 Noisy channels -- 3.1.1 The noisy-channel coding theorem -- 3.1.2 The Shannon-Hartley theorem -- 3.2 The fiber optic channel -- 3.3 The acoustic channel -- 3.4 The RF channel -- 3.5 The optical channel -- 3.5.1 Electrical conductivity -- 3.5.2 Molecular absorption -- 3.5.3 Molecular scattering -- 3.5.4 Particles, plankton, and gelbstoffe -- 3.5.5 Beam spreading -- 3.5.6 Multi-path propagation -- 3.5.7 Background noise -- 3.6 Summary --
4. Underwater optical communications: technology -- 4.1 Underwater optical communications -- 4.2 Previous efforts -- 4.3 System design -- 4.4 Receiver -- 4.5 Photosensor -- 4.5.1 Photo-multiplier tubes -- 4.5.2 Semiconductor photosensors -- 4.5.3 Biologically-inspired quantum photosensors (BQP) -- 4.6 Transmitter -- 4.7 Optical source -- 4.7.1 Argon-ion lasers -- 4.7.2 DPSS lasers -- 4.7.3 InGaN lasers -- 4.7.4 Tunable lasers -- 4.7.5 Laser modulators -- 4.7.6 LEDs -- 4.8 Other technological considerations -- 4.9 Summary --
5. Underwater optical communications: noise analysis -- 5.1 Data rate -- 5.2 Signal-to-noise ratio -- 5.3 Sensor responsivity and excess noise -- 5.4 Quantum shot noise -- 5.5 Optical excess noise -- 5.5.1 Laser intensity noise -- 5.5.2 Modal noise -- 5.5.3 Mode partition noise -- 5.6 Optical background noise -- 5.6.1 Background solar radiation -- 5.6.2 Backscattered laser radiation -- 5.7 Photo-detector dark current noise -- 5.8 Electronic noise -- 5.8.1 Thermal noise -- 5.8.2 Electronic shot noise -- 5.8.3 1/f noise -- 5.8.4 Preamplifier noise -- 5.9 Summary --
6. Underwater optical communications: system performance -- 6.1 Optical attenuation -- 6.2 Noise equivalent power -- 6.3 Signal-to-noise ratio -- 6.4 Channel capacity -- 6.5 Summary --
7. Underwater quantum communications -- 7.1 Quantum cryptography -- 7.1.1 Quantum information -- 7.1.2 Quantum key distribution -- 7.1.3 The BB84 QKD protocol -- 7.2 Quantum bit error rate -- 7.3 Performance of the quantum channel -- 7.3.1 Clear ocean waters -- 7.3.2 Intermediate and murky ocean waters -- 7.3.3 Quantum efficiency -- 7.3.4 Field of view -- 7.3.5 Attenuation coefficient -- 7.3.6 Maximum capacity of the classical channel -- 7.4 Secret key generation rate -- 7.5 Summary --
8. Conclusions -- 8.1 Underwater communication channels -- 8.2 Underwater RF communications -- 8.3 Underwater optical communications -- 8.4 Open questions -- 8.5 The bottom line --
References -- Author's biography.
Abstract: Underwater vehicles and underwater moorings are increasing in tactical importance. As such, it is critical to have a robust and secure communication system connecting underwater vehicles on a long seaborne mission and a ground station. As a matter of fact, the deployment of efficient communication links with underwater vehicles is one of the greatest technological challenges presently confronted by the world's naval forces. To circumvent most of the limitations involved in the use of RF or acoustic channels for perfectly secure communications with underwater vehicles, it is worth considering the feasibility of an optical channel to facilitate a two-way satellite communication link secured via perfectly secure ciphers enabled by a quantum key distribution protocol.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
Ebooks Ebooks Indian Institute of Technology Delhi - Central Library
Available

Mode of access: World Wide Web.

System requirements: Adobe Acrobat Reader.

Part of: Synthesis digital library of engineering and computer science.

Series from website.

Includes bibliographical references (p. 97-112).

Preface -- Acknowledgments --

1. Introduction -- 1.1 Perfectly secure communications -- 1.2 Public key distribution protocols -- 1.3 Summary --

2. Electrodynamics of attenuating media -- 2.1 Propagation in attenuating media -- 2.2 Maxwell equations in material media -- 2.2.1 Electromagnetic waves in dielectrics -- 2.2.2 Electromagnetic waves in conductors -- 2.2.3 Attenuation and refractive indices -- 2.3 Molecular absorption -- 2.3.1 Resonant absorption -- 2.3.2 Low-frequency limit -- 2.3.3 The plasma frequency -- 2.3.4 Energy dissipation -- 2.4 Molecular scattering -- 2.4.1 Density and temperature fluctuations -- 2.4.2 Rayleigh scattering -- 2.5 Mie scattering -- 2.6 Summary --

3. Underwater communication channels -- 3.1 Noisy channels -- 3.1.1 The noisy-channel coding theorem -- 3.1.2 The Shannon-Hartley theorem -- 3.2 The fiber optic channel -- 3.3 The acoustic channel -- 3.4 The RF channel -- 3.5 The optical channel -- 3.5.1 Electrical conductivity -- 3.5.2 Molecular absorption -- 3.5.3 Molecular scattering -- 3.5.4 Particles, plankton, and gelbstoffe -- 3.5.5 Beam spreading -- 3.5.6 Multi-path propagation -- 3.5.7 Background noise -- 3.6 Summary --

4. Underwater optical communications: technology -- 4.1 Underwater optical communications -- 4.2 Previous efforts -- 4.3 System design -- 4.4 Receiver -- 4.5 Photosensor -- 4.5.1 Photo-multiplier tubes -- 4.5.2 Semiconductor photosensors -- 4.5.3 Biologically-inspired quantum photosensors (BQP) -- 4.6 Transmitter -- 4.7 Optical source -- 4.7.1 Argon-ion lasers -- 4.7.2 DPSS lasers -- 4.7.3 InGaN lasers -- 4.7.4 Tunable lasers -- 4.7.5 Laser modulators -- 4.7.6 LEDs -- 4.8 Other technological considerations -- 4.9 Summary --

5. Underwater optical communications: noise analysis -- 5.1 Data rate -- 5.2 Signal-to-noise ratio -- 5.3 Sensor responsivity and excess noise -- 5.4 Quantum shot noise -- 5.5 Optical excess noise -- 5.5.1 Laser intensity noise -- 5.5.2 Modal noise -- 5.5.3 Mode partition noise -- 5.6 Optical background noise -- 5.6.1 Background solar radiation -- 5.6.2 Backscattered laser radiation -- 5.7 Photo-detector dark current noise -- 5.8 Electronic noise -- 5.8.1 Thermal noise -- 5.8.2 Electronic shot noise -- 5.8.3 1/f noise -- 5.8.4 Preamplifier noise -- 5.9 Summary --

6. Underwater optical communications: system performance -- 6.1 Optical attenuation -- 6.2 Noise equivalent power -- 6.3 Signal-to-noise ratio -- 6.4 Channel capacity -- 6.5 Summary --

7. Underwater quantum communications -- 7.1 Quantum cryptography -- 7.1.1 Quantum information -- 7.1.2 Quantum key distribution -- 7.1.3 The BB84 QKD protocol -- 7.2 Quantum bit error rate -- 7.3 Performance of the quantum channel -- 7.3.1 Clear ocean waters -- 7.3.2 Intermediate and murky ocean waters -- 7.3.3 Quantum efficiency -- 7.3.4 Field of view -- 7.3.5 Attenuation coefficient -- 7.3.6 Maximum capacity of the classical channel -- 7.4 Secret key generation rate -- 7.5 Summary --

8. Conclusions -- 8.1 Underwater communication channels -- 8.2 Underwater RF communications -- 8.3 Underwater optical communications -- 8.4 Open questions -- 8.5 The bottom line --

References -- Author's biography.

Abstract freely available; full-text restricted to subscribers or individual document purchasers.

Compendex

INSPEC

Google scholar

Google book search

Underwater vehicles and underwater moorings are increasing in tactical importance. As such, it is critical to have a robust and secure communication system connecting underwater vehicles on a long seaborne mission and a ground station. As a matter of fact, the deployment of efficient communication links with underwater vehicles is one of the greatest technological challenges presently confronted by the world's naval forces. To circumvent most of the limitations involved in the use of RF or acoustic channels for perfectly secure communications with underwater vehicles, it is worth considering the feasibility of an optical channel to facilitate a two-way satellite communication link secured via perfectly secure ciphers enabled by a quantum key distribution protocol.

Also available in print.

Title from PDF t.p. (viewed on November 24, 2012).

There are no comments on this title.

to post a comment.
Copyright © 2022 Central Library, Indian Institute of Technology Delhi. All Rights Reserved.

Powered by Koha