000 05881nam a2200733 i 4500
001 6813292
003 IEEE
005 20220822104830.0
006 m eo d
007 cr cn |||m|||a
008 121210s2012 caua foab 000 0 eng d
020 _a9781598292695 (electronic bk.)
020 _z9781598292688 (pbk.)
024 7 _a10.2200/S00454ED1V01Y201210COM008
_2doi
035 _a(CaBNVSL)swl00401757
035 _a(OCoLC)820720069
040 _aCaBNVSL
_cCaBNVSL
_dCaBNVSL
050 4 _aT57.9
_b.T727 2012
082 0 4 _a519.82
_223
100 1 _aTranter, William H.
245 1 2 _aA tutorial on queuing and trunking with applications to communications
_h[electronic resource] /
_cWilliam H. Tranter and Allen B. MacKenzie.
260 _aSan Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) :
_bMorgan & Claypool,
_cc2012.
300 _a1 electronic text (xii, 92 p.) :
_bill., digital file.
490 1 _aSynthesis lectures on communications,
_x1932-1708 ;
_v# 8
538 _aMode of access: World Wide Web.
538 _aSystem requirements: Adobe Acrobat Reader.
500 _aPart of: Synthesis digital library of engineering and computer science.
500 _aSeries from website.
504 _aIncludes bibliographical references (p. 89-90).
505 0 _a1. Introduction -- 1.1 The Poisson process - strengths and weaknesses -- 1.2 Outline -- 1.3 MATLAB --
505 8 _a2. Poisson, Erlang, and Pareto distributions -- 2.1 The Poisson distribution -- 2.1.1 Development of the Poisson distribution -- 2.1.2 Interevent times -- 2.2 The Erlang distribution -- 2.2.1 Derivation of the Erlang distribution -- 2.2.2 Mean and variance of the Erlang-m random variable -- 2.2.3 Plots of the Erlang distribution -- 2.2.4 Erlang and gamma random variables -- 2.3 The Pareto distribution -- 2.4 Problems -- 2.5 Appendix A. Generating samples with an exponential distribution -- 2.6 Appendix B. The gamma function --
505 8 _a3. A brief introduction to queueing theory -- 3.1 Birth-death processes -- 3.2 Examples of simple queues -- 3.2.1 The single-server queue -- 3.2.2 Multiple-server queues -- 3.3 Three example simulations -- 3.3.1 The simulation of a pure birth process -- 3.3.2 Simulation of a birth-death process -- 3.4 Problems -- 3.5 Appendix A. The moment-generating function -- 3.6 Appendix B. MATLAB code for examples 3.2 and 3.3 -- 3.6.1 MATLAB code for example 3.2 -- 3.6.2 MATLAB code for example 3.3 --
505 8 _a4. Blocking and delay -- 4.1 Erlang-B results (M/M/C/C) -- 4.2 Erlang-C results (M/M/C/[infinity]) -- 4.3 Delay time, Little's theorem -- 4.3.1 Little's theorem -- 4.3.2 Average queue length for M/M/C/[infinity] system -- 4.3.3 Result for delay -- 4.4 Problems -- 4.5 Appendix A. MATLAB code for the Erlang-B chart -- 4.6 Appendix B. MATLAB code for the Erlang-C chart --
505 8 _a5. Networks of queues -- 5.1 Burke's theorem -- 5.2 Basic model -- 5.3 Jackson's theorem -- 5.3.1 Statement of Jackson's theorem -- 5.3.2 Proof of Jackson's theorem -- 5.4 Extensions to Jackson's theorem -- 5.4.1 Dependent service rate networks -- 5.4.2 Jackson's theorem for dependent service rate network -- 5.4.3 Closed networks -- 5.4.4 Jackson's theorem for closed networks -- 5.5 BCMP theorem -- 5.5.1 Statement of the BCMP theorem -- 5.6 Kleinrock's formula -- 5.7 Problems -- 5.8 Appendix A. MATLAB code for example 5.3 -- 5.9 Appendix B. MATLAB code for example 5.3 --
505 8 _aBibliography -- Authors' biographies.
506 1 _aAbstract freely available; full-text restricted to subscribers or individual document purchasers.
510 0 _aCompendex
510 0 _aINSPEC
510 0 _aGoogle scholar
510 0 _aGoogle book search
520 3 _aThe motivation for developing this synthesis lecture was to provide a tutorial on queuing and trunking, with extensions to networks of queues, suitable for supplementing courses in communications, stochastic processes, and networking. An essential component of this lecture are the MATLAB-based demonstrations and exercises, which can be easily modified to enable the student to observe and evaluate the impact of changing parameters, arrival and departure statistics, queuing disciplines, the number of servers, and other important aspects of the underlying system model. Much of the work in this lecture is based on Poisson statistics, since Poisson models are useful due to the fact that Poisson models are analytically tractable and provide a useful approximation for many applications. We recognize that the validity of Poisson statistics is questionable for a number of networking applications and therefore we briefly discuss self-similar models and the Hurst parameter, long-term dependent models, the Pareto distribution, and other related topics. Appropriate references are given for continued study on these topics.
530 _aAlso available in print.
588 _aTitle from PDF t.p. (viewed on December 10, 2012).
630 0 0 _aMATLAB.
650 0 _aQueuing networks (Data transmission)
_xMathematical models.
650 0 _aQueuing theory.
653 _aqueuing
653 _atrunking
653 _aPoisson process
653 _aErlang distribution
653 _aErlang-A and Erlang-B characteristics
653 _ablocking probability
653 _adelay probability
653 _aLittle's theorem
653 _anetworks of queues
653 _aJackson's theorem
653 _aBCMP theorem
653 _aKleinrock's formula
700 1 _aMacKenzie, Allen Brantley,
_d1977-
776 0 8 _iPrint version:
_z9781598292688
830 0 _aSynthesis digital library of engineering and computer science.
830 0 _aSynthesis lectures on communications ;
_v# 8.
_x1932-1708
856 4 2 _3Abstract with links to resource
_uhttp://ieeexplore.ieee.org/servlet/opac?bknumber=6813292
999 _c237956
_d237956